Result of the IMO Video Meteor Network – Third Quarter 2019

Sirko Molau. Abenstalstr. 13b. 84072 Seysdorf

In the third quarter of 2019 we operated about 80 active meteor cameras in the IMO network, similar to previous months. The weather was most of the time ok, with just short periods of poor observing conditions around July 14 and 28, and between September 7 and 9, when the number of cameras dropped dramatically (Figure 1). Still, the output of the network remained well below previous years. 76 active cameras in July recorded about 32,000 meteors on well over 7,700 hours of effective observing time. In August we had 82 active cameras that captured over 73,000 meteors in over 12,000 observing hours. Both are the worst monthly results since 2014. In September we operated 80 cameras. Their output was about 50,000 meteors in nearly 12,000 hours of observing time. That is still below average, but at least not the worst result since 2014.

Figure 1: Number of active cameras per night (grey bars) and effective observing time of these cameras (red line) in the third quarter of 2019.

With regards to the meteor count we can clearly see the summer peak in figure 2. Even though the hourly average of four meteors per hour in early July is well above the annual minimum, we have short summer nights which limit the absolute number of meteors that can be recorded in the northern hemisphere. Towards the end of July, we have several active meteor showers (alpha Capricornids, southern delta Aquariids, Perseids) and the nights are getting longer, which raises the meteor counts significantly. In mid-August we reach the annual maximum. In the Perseid peak nights we record fifteen meteors per hour and more. In September the numbers reduce again, but the average hourly rate is still twice as high as in early July.

Figure 2: Number of recorded meteors per night (grey bars) and average number of meteors per hours (red line) in the third quarter of 2019.

After all observations had been uploaded to the flux database, we can now have a look at the activity profiles of meteor showers in the third quarter of 2019. In fact, thanks to new functions in meteorflux.org, we can derive population index profiles in parallel.

Let's start with the alpha Capricornids. Figure 3 shows their activity profile of 2019 compared to the long-term profile of the years 2011 to 2018. We see some remarkable deviations. The profile as such looks similar, but the whole activity seems to be shifted forward by 5° solar longitude. The peak occurs already at 122° solar longitude, in contrast to 127° solar longitude in the long-term average.

Figure 3: Flux density of the alpha Capricornids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

The population index of the alpha Capricornids starts at values above r= 2.5, but we assume that sporadic pollution is dominating at the edges of the activity profile. At the activity peak the population index is r=2.6, and at the descending activity branch in drops to r=2.3. This behaviour fits perfectly to the long-term profile with a minimum population index of r=2.0 at 129° solar longitude only shortly after the flux density peak (figure 4).

Figure 4: Population index of the alpha Capricornids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

The July gamma Draconids (figure 5) emerge hardly from the sporadic background in 2019, similar to previous years with the exception of 2016, when they experienced a brief outburst.

Figure 5: Flux density of the July gamma Draconids in 2019 (red) as well as in the average of the years 2011-2018 (without 2016, blue), derived from observations of the IMO Network.

In case of the southern delta Aquariids, the activity profile of 2019 fits nicely to the average of 2011 to 2018 (figure 6) – only the absolute flux density value remains well below the average. Whereas we typically observe values of up to 30 meteoroids per 1,000 km² and hour, it was only

Figure 6: Flux density of the southern delta Aquariids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

According to the IMO Meteor Shower Calendar, the population index drops from values of r=3.0 away from the peak tor=2.5 at the activity maximum. In the 2019 profile (figure 7) we can see the drop clearly, but starting from r=2.5 to values of r=1.8. In the long-term profile the dip is less intense. Here we start with values of r=2.2 before the peak. The population index falls to r=2.0 during the peak, and rises to r=2.3 thereafter.

Figure 7: Population index of the southern delta Aquariids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

Let's now continue with the highlight of the year, the Perseids. Figure 8 compares at first the overall activity profile of 2019 with the average of the years 2011 to 2018. We notice the slow increase from mid-July to early August. At around 137° solar longitude the rate is raising dramatically, and it peaks at 139.5° solar longitude. Thereafter the rate is declining a little slower, but longer. Only at 142° solar longitude the decease is decelerating, and a week later the

Perseids are lost in the sporadic background. In this respect, 2019 data fit perfectly to the long-term profile.

Figure 8: Flux density of the Perseids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

If we have a closer look at the peak time (figure 9) we still have a good match. Only peak flux density of about 30 meteoroids per 1,000 km² and hour in 2019 is below average.

Figure 9: Flux density of the Perseids near their peak in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

The population index profile of the Perseids differs from other showers. It is nearly constant and only oscillates between values of r=1.7 and r=2.0. The 2019 profile fits well into that trend, but we measured a slightly smaller value just at the shower peak. Overall, the brightness distribution is nearly constant and the fraction of bright meteors quite high (figure 10).

Figure 10: Population index of the Perseids near their peak in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

This behaviour does not change when we extend the graph to the full activity interval of the Perseids. Not surprisingly, the population index shows strong scatter at the edges due to sporadic pollution, but the r-values remain rather low at all times (figure 11).

Figure 11: Population index of the Perseids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

The kappa Cygnids are active thoughout most of August. Their flux density is low, but they can still be distinguished clearly from the background. When comparing the activity profile of 2019 with the long-term average (figure 12) we left out 2014, when the shower experienced an outburst. Overall, the 2019 data fit well to the long-term profile.

Figure 12: Flux density of the kappa Cygnids in 2019 (red) as well as in the average of the years 2011-2018 (without 2014, blue), derived from observations of the IMO Network.

The population index of the kapa Cygnids is r=2.6 at the edges, and it drops to values near r=2.2 at the activity peak. The 2019 profile fits also in this respect to the long-term trend (figure 13). Note that the activity profile shows a kind of double-peak at 140° and 146° solar longitude. At the same time, we see dips in the population index profile. Maybe we observe here two components of the shower.

Figure 13: Population index of the kappa Cygnids in 2019 (red) as well as in the average of the years 2011-2018 (without 2014, blue), derived from observations of the IMO Network.

Finally, we want to analyse two showers of September. The alpha Aurigids (figure 14) can hardly be discerned from the sporadic background – neither in 2019 nor in the long-term activity profile.

Figure 14: Flux density of the alpha Aurigids in 2019 (red) as well as in the average of the years 2011-2018 (blue), derived from observations of the IMO Network.

The September epsilon Perseids present often a surprise to the observers – last time in 2008 and 2013. According to the IMO Meteor Shower Calendar we did not expect enhanced activity in 2019. Only Mikiya Sato predicted possible outbursts at a solar longitude of 166.801° (2018) resp. 166.831° (2019). A quick look at the activity profile (figure 15) confirms this prognosis for 2019.

Figure 15: Flux density of the September epsilon Perseids in 2019 (red) as well as in the average of the years 2011-2018 (without 2013, blue), derived from observations of the IMO Network.

When we increase the temporal resolution (figure 16) we see a short outburst on September 10, 2019, near 01:10 UT (166.79° solar longitude). The peak solar longitude fits better to the prediction for 2018 than 2019. With about 17 meteoroids per 1,000 km² and hour, the activity was not as high as in previous outbursts, but it was still three times the average activity. The full width at half maximum (FWHM) was just half an hour.

Figure 16: Flux density of the September epsilon Perseids near their peak in 2019, derived from observations of the IMO Network.

The population index was r=1.6 in the peak night. In the other nights, it scattered between r=1,75 and r=2,25 similar to the long-term profile (figure 17, without 2013).

Figure 17: Population index of the September epsilon Perseids in 2019 (red) as well as in the average of the years 2011-2018 (without 2013, blue), derived from observations of the IMO Network.

Table 2: Observational statistics for first quarter of 2019.

				July			August			September		
Code	Name	Place	Camera	Nights	Time [h]	Meteors	Nights	Time [h]	Meteors	Nights	Time [h]	Meteors
ARLRA	Arlt	Ludwigsfelde/DE	LUDWIG2	27	89.5	598	26	124.9	932	23	136.2	897
BERER	Berkó	Ludanyhalaszi/HU	HULUD1	8	44.5	191	20	126.5	1008	11	101.8	437
BIATO	Bianchi Bombardini	Mt. San Lorenzo/IT	MARIO	24	115.1	427	29	180.0	1692	26	176.9	518
BRIBE	Klemt	Herne/DE	HERMINE	20	98.7	417	26	128.1	760	23	128.0	478
		Berg. Gladbach/DE	KLEMOI	26	100.9	426	27	138.1	875	20	134.7	534
CARMA	Carli	Monte Baldo/IT	BMH2	27	148.8	905	31	166.8	1337	27	201.1	1170
CASFL	Castellanı	Monte Baldo/IT	BMHI	27	146.8	392	30	147.4	531	24	187.3	426
CRIST	Crivello	Valbrevenna/IT	ARCI	30	141.8	742	31	211.5	1453	22	195.8	647
			BILBO	30	154.0	827	30	205.8	1572	27	187.9	793
			C3P8	29	131.1	526	30	167.5	1103	26	170.3	566
ELTMA	Elt.	V	STG38	16	50.6	262	31	207.4	1819	28	215.3	1181
FORKE	Förster	Carlsfeld/DF	AKM3	29	76.6	393 472	28	127.2	1017	20	104.7	532
GONRU	Goncalves	Tomar/PT	TEMPLAR1	28	162.2	708	30	198.2	1184	30	221.1	966
			TEMPLAR2	27	157.8	538	30	199.8	1050	30	226.9	753
			TEMPLAR3	23	130.9	210	28	172.7	469	28	215.4	328
			TEMPLAR4	29	140.0	550 445	29	189.9	1229	29	222.4	706
GOVMI	Govedic	Sredisce ob Dr./SI	ORION2	26	88.7	275	17	86.6	456	23	71.3	450
			ORION3	12	54.8	87	26	152.2	439	21	116.2	202
			ORION4	11	45.2	82	26	139.7	395	22	113.3	169
HINWO	Hinz	Schwarzenberg/DE	HINWOI	25	99.4	417	29	163.0	968	23	151.9	625
IOAAN	Igaz	Budapest/HU	HUSOR	-	- 84.0	- 04	29	181.7	564	24	165.2	321
voru	v on mo	Budapest/HU	HUSOR2	21	109.5	212	29	181.7	567	21	145.8	299
KACJA	Kac	Kamnik/SI	CVETKA	17	80.5	464	18	105.6	854	15	103.8	662
		1/01	METKA	6	14.6	60	27	156.2	368	22	145.9	312
		Kamnik/SI	REZIKA SRAKA	23	83.4	480	18	93.0	823	15	122.9	1068
		Kamnik/SI	STEFKA	17	81.5	292	18	109.7	580	15	109.4	433
KNOAN	Knöfel	Berlin/DE	ARMEFA	13	44.0	117	21	115.5	420	22	135.7	272
KOSDE	Koschny	La Palma / ES	ICC7	29	174.8	476	28	181.6	564	21	86.3	226
			LIC1	- 27	- 153.5	- 720	24	149.8	899	29	204.4	1040
			LIC1 LIC2	-	-	-	28	188.3	2387	21	254.6	2768
KWIMA	Kwinta	Krakow/PL	PAV06	17	63.6	112	23	129.7	349	16	101.0	156
			PAV07	19	64.1	123	23	128.9	358	16	101.2	153
MACMA	Magigiowaki	Chalm/DI	PAV79 PAV25	19	72.8	228	23	136.1	529	16	107.1	314
MACMA	Maciejewski	Cheim/PL	PAV35 PAV36	9	30.9	212	27	122.5	1249	18	107.7	521 540
			PAV43	9	36.6	175	27	138.4	977	19	123.3	478
			PAV60	10	34.3	272	27	136.8	1128	16	116.4	621
MARRU	Marques	Lisbon/PT	CAB1	29	181.2	549	31	227.5	1480	30	233.2	714
MISST	Missiaggio	Novo/IT	TOALDO	24	102.5	274	29	182.8	1093	29	203.3	518
MOLSI	Molau	Sevsdorf/DE	AVIS2	21	102.3	841	28	119.1	1055	26	157.4	1119
		5	DIMCAM2	25	113.7	1338	25	113.6	1603	24	149.5	1610
			ESCIMO3	26	121.7	755	26	124.6	835	23	157.5	902
		Ketzür/DE	REMO1	28	99.8	923	28	138.2	1328	25	144.0	1197
			REMO2	26	110.3	673	28	128.4	1059	20	164.6	849
			REMO4	26	109.7	864	30	158.9	1365	26	172.2	1148
MORJO	Morvai	Fülöpszallas/HU	HUFUL	28	148.2	228	28	190.2	513	26	182.9	308
MOSFA	Moschini	Rovereto/IT	ROVER	24	115.1	197	30	131.5	439	24	156.1	246
NAGHE	Nagy	Budapest/HU Piszkestető/HU	HUKON	29	46.9	531	23	108.5	850	15	85.8	306 605
OTTMI	Otte	Pearl City/US	ORIE1	4	19.4	49	24	58.8	132	8	3.3	17
PERZS	Perkó	Becsehely/HU	HUBEC	26	111.2	439	27	160.6	862	20	127.4	537
SARAN	Saraiva	Carnaxide/PT	RO1	30	208.2	491	30	202.7	896	27	241.8	550
			RO2 RO3	30	202.1	627 856	29 31	208.5	1047	30	250.4	/58
SCALE	Scarpa	Alberoni/IT	LEO	26	113.3	154	22	116.9	364	-	-	-
SCHHA	Schremmer	Niederkrüchten/DE	DORAEMON	25	94.6	354	24	139.4	705	22	129.4	484
SLAST	Slavec	Ljubljana/SI	KAYAK1	15	57.9	183	21	110.6	439	19	115.3	336
STOFN	Stomeo	Scorze/IT	KAYAK2 MIN38	19	89.8	126	21	115.6	231	22	138.2	158
STOEN	Stollieo	300126/11	NOA38	29	135.0	579	30	145.8	1191	29	194.6	844
			SCO38	27	103.9	687	30	147.0	1628	29	182.6	1186
STRJO	Strunk	Herford/DE	BEMCE	-	-	-	11	77.6	853	20	120.3	1191
			MINCAM2	23	92.7	578	28	154.1	1205	25	131.6	676
			MINCAM3 MINCAM4	23	/0.4 88.0	255	27	100.8	088	20	110.0	4/8
			MINCAM5	23	84.9	201	28	139.8	631	19	78.6	241
			MINCAM6	23	83.2	299	16	67.0	600	-	-	-
TEPIS	Tepliczky	Agostyan/HU	HUAGO	18	63.6	178	26	136.2	353	18	137.4	187
WEGWA	Wearzyk	Nieznaszwn/PI	PAV78	12	85.9	300 128	29	162.1 84.4	427	23	1/0.6	823
YRJIL	Yrjölä	Kuusankoski/FI	FINEXCAM	-		-	22	93.5	514	23	127.8	420
ZAKJU	Zakrajšek	Petkovec/SI	PETKA	12	50.0	252	17	98.6	484	25	170.1	919
L			TACKA	10	39.5	74	16	82.9	202	22	154.2	350
Summe				31	7722.0	32217	31	12047.6	73336	30	11994.9	50208