Meteoroid Flux Profiles from the IMO Video Meteor Network
Geert Barentsen, Sirko Molau, Detlef Koschny (geert@barentsen.be, sirko@molau.de, detlef.koschny@esa.int)

1. Introduction
The video network of the International Meteor Organisation (IMO) consists of >80 narrow-angle video cameras, which are capable of detecting meteors in visible light down to a mean limiting magnitude of +3.0 ± 0.8 mag (with reference stars detected down to +4.0 ± 0.9 mag). All stations are operated using the MetRec meteor detection software. MetRec initially focused on collecting astrometric and photometric measurements, but two years ago it also started providing limiting magnitudes and hence flux estimates (Molau 2011). Recently, we implemented a system to collect the flux measurements automatically via a web application. This allows the meteor activity in the optical domain to be monitored in near real-time.

2. Real-time flux reporting
Observing stations can report fluxes every minute by sending a short text message to a web service API. The message must include the number of meteors per shower and the associated Effective Collection Area (ECA), which is given in units [km² · h] and includes a correction for the difference between the actual and the nominal limiting magnitude (+6.5 mag).

3. Visualisation
A Python web application allows activity profiles to be extracted from the database of flux messages, which contains 53 million records at present. Graphs can be generated using configurable binning parameters.

4. Results
The figures below show examples of flux profiles which were generated using the web application. Different visualisation parameters were chosen for each shower to highlight different aspects of both the dataset and the meteoroid streams.

4.1 Lyrids 2011-2013
4.2 β-Aquarids 2011-2013
4.3 Perseids 2011-2013 (averaged)
4.4 Orionids 2011-2012 (averaged)
4.5 Leonids 2011-2012
4.6 Geminids 2012
4.7 Quadrantids 2012-2013
4.8 Antellion 2012
4.9 Sporadics 2011-2013 (averaged)

5. Conclusions, future & source code
Our software provides the much-needed capability to monitor the activity of meteoroid streams in the faint optical domain, down to a typical depth of +3 to +4 mag. In future work, we aim to improve the analyses by including mass index estimates and visual observations. The web application can be used to support other observing networks as well. The source code is available under a permissive MIT license at: https://github.com/barentsen/meteor-flux

Acknowledgements
We thank ESA/SSD for providing us with computing facilities (VMO server). The flux profiles shown include data provided by Luc Bastiaens, Emo Birkto, Mario Bombardini, Martin Breukers, Bernd Brinkmann, Flavio Castellani, Stefano Crivello, Szilard Csismadia, Mauro R. Ebi, Rui Goncalves, Mitja Govedic, Wolfgang Hinz, An- tali Ipa, Kornely Jonas, Javor Kaz, Stephen Kerr, Gregor Kladek, Detlef Koschny, Arnaud Leroy, Bob Lumsford, Maciej Maciejewski, Grigorios Maravelias, Sirko Molau, Jozsef Morvai, Mike Ottes, Zolt Belke, Eikehard Rothenberg, Orlando Sanchez, Carlos Sarano, Napoleone Scarpa, Hans Schremer, Stane Slavec, Pavel Spurny, Ervinko Stomeo, Nostas Stork, Jörg Strunk, Istvan Teplicky, Mihaela Triglav, Ikiya Utida, and Zoltan Zielke.

References